214 research outputs found

    Probing the dusty stellar populations of the Local Volume Galaxies with JWST/MIRI

    Full text link
    The Mid-Infrared Instrument (MIRI) for the {\em James Webb Space Telescope} (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich {\em Spitzer}-IRS spectroscopic data-set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of over a thousand objects in the Magellanic Clouds, the Grid of Red supergiant and Asymptotic giant branch star ModelS ({\sc grams}), and the grid of YSO models by Robitaille et al. (2006), we calculate the expected flux-densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the {\em JWST}/MIRI colours and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI colour classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colours.Comment: 16 pages, 7 figures, 2 online tables; accepted for publication in Ap

    Current and Future Space and Airborne Observatories for ISM Studies

    Full text link
    A tremendous amount of radiation is emitted by the Interstellar Medium in the mid- and far-infrared (3-500 {\mu}m) that represents the majority of the light emitted by a galaxy. In this article we motivate ISM studies in the infrared and the construction of large specialized observatories like the Stratospheric Observatory For Infrared Astronomy (SOFIA), which just concluded its mission on a scientific high note, and the newly launched James Webb Space Telescope (JWST) that just begun its exciting scientific mission. We introduce their capabilities, present a few examples of their scientific discoveries and discuss how they complemented each other. We then consider the impact of the conclusion of SOFIA for the field in a historic context and look at new opportunities specifically for far-infrared observatories in space and in the stratosphere

    Westbrook's Molecular Gun: Discovery of Near-IR Micro-Structures in AFGL 618

    Get PDF
    We present high-sensitivity near-IR images of a carbon-rich proto-planetary nebula, AFGL 618, obtained with the Subaru Telescope. These images have revealed ``bullets'' and ``horns'' extending farther out from the edges of the previously known bipolar lobes. The spatial coincidence between these near-IR micro-structures and the optical collimated outflow structure, together with the detection of shock-excited, forbidden IR lines of atomic species, strongly suggests that these bullets and horns represent the locations from which [\ion{Fe}{2}] IR lines arise. We have also discovered CO clumps moving at >200> 200 km s−1^{-1} at the positions of the near-IR bullets by re-analyzing the existing 12^{12}CO J=1−0J=1-0 interferometry data. These findings indicate that the near-IR micro-structures represent the positions of shocked surfaces at which fast-moving molecular clumps interface with the ambient circumstellar shell.Comment: 2 figures. To appear in the ApJ Letter

    Near-Infrared Stellar Populations in the metal-poor, Dwarf irregular Galaxies Sextans A and Leo A

    Full text link
    We present JHKs_{s} observations of the metal-poor ([Fe/H] << -1.40) Dwarf-irregular galaxies, Leo A and Sextans A obtained with the WIYN High-Resolution Infrared Camera at Kitt Peak. Their near-IR stellar populations are characterized by using a combination of colour-magnitude diagrams and by identifying long-period variable stars. We detected red giant and asymptotic giant branch stars, consistent with membership of the galaxy's intermediate-age populations (2-8 Gyr old). Matching our data to broadband optical and mid-IR photometry we determine luminosities, temperatures and dust-production rates (DPR) for each star. We identify 32 stars in Leo A and 101 stars in Sextans A with a DPR >10−11>10^{-11} M⊙ yr−1M_\odot \,{\rm yr}^{-1}, confirming that metal-poor stars can form substantial amounts of dust. We also find tentative evidence for oxygen-rich dust formation at low metallicity, contradicting previous models that suggest oxygen-rich dust production is inhibited in metal-poor environments. The total rates of dust injection into the interstellar medium of Leo A and Sextans A are (8.2 ±\pm 1.8) ×10−9\times 10^{-9} M⊙ yr−1M_\odot \,{\rm yr}^{-1} and (6.2 ±\pm 0.2) ×10−7\times 10^{-7} M⊙ yr−1M_\odot \,{\rm yr}^{-1}, respectively. The majority of this dust is produced by a few very dusty evolved stars, and does not vary strongly with metallicity.Comment: 21 pages, 11 figures, 10 tables; accepted for publication in Ap

    Dust Destruction Rates and Lifetimes in the Magellanic Clouds

    Get PDF
    The nature, composition, abundance, and size distribution of dust in galaxies is determined by the rate at which it is created in the different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetime and destruction efficiencies of silicate and carbon dust in these galaxies. We find dust lifetimes of 22 +- 13 Myr (30 +- 17 Myr) for silicate (carbon) grains in the LMC, and 54 +- 32 Myr (72 +- 43 Myr) for silicate (carbon) grains in the SMC. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass, and the fact that the dust-destroying isolated SNe in the MCs seem to be preferentially occurring in regions with higher than average dust-to-gas (D2G) mass ratios. We also calculate the supernova rate and the current star formation rate in the MCs, and use them to derive maximum dust injection rates by asymptotic giant branch stars and core collapse supernovae. We find that the injection rates are an order of magnitude lower than the dust destruction rates by the SNRs. This supports the conclusion that, unless the dust destruction rates have been considerably overestimated, most of the dust must be reconstituted from surviving grains in dense molecular clouds. More generally, we also discuss the dependence of the dust destruction rate on the local D2G mass ratio, the ambient gas density and metallicity, as well as the application of our results to other galaxies and dust evolution models.Comment: 15 pages, 8 figures, 5 tables, accepted to Ap
    • …
    corecore